Developmental expression of Synaptotagmin isoforms in single calyx of Held-generating neurons.

نویسندگان

  • Le Xiao
  • Yunyun Han
  • Heike Runne
  • Heather Murray
  • Olexiy Kochubey
  • Ruth Luthi-Carter
  • Ralf Schneggenburger
چکیده

The large glutamatergic calyx of Held synapse in the auditory brainstem has become a powerful model for studying transmitter release mechanisms, but the molecular bases of presynaptic function at this synapse are not well known. Here, we have used single-cell quantitative PCR (qPCR) to study the developmental expression of all major Synaptotagmin (Syt) isoforms in putative calyx of Held-generating neurons (globular bushy cells) of the ventral cochlear nucleus. Using electrophysiological criteria and the expression of marker genes including VGluTs (vesicular glutamate transporters), Ca(2+) binding proteins, and the transcription factor Math5, we identified a subset of the recorded neurons as putative calyx of Held-generating bushy cells. At postnatal days 12-15 these neurons expressed Syt-2 and Syt-11, and also Syt-3, -4, -7 and -13 at lower levels, whereas Syt-1 and -9 were absent. Interestingly, early in development (at P3-P6), immature bushy cells expressed a larger number of Syt-isoforms, with Syt-1, Syt-5, Syt-9 and Syt-13 detected in a significantly higher percentage of neurons. Our study sheds light on the molecular properties of putative calyx of Held-generating neurons and shows the developmental regulation of the Syt-isoform expression profile in a single neuron type.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RIM1 and RIM2 redundantly determine Ca2+ channel density and readily releasable pool size at a large hindbrain synapse.

The localization and density of voltage-gated Ca(2+) channels at active zones are essential for the amount and kinetics of transmitter release at synapses. RIM proteins are scaffolding proteins at the active zone that bind to several other presynaptic proteins, including voltage-gated Ca(2+) channel α-subunits. The long isoforms of RIM proteins, which contain NH2-terminal Rab3- and Munc13-inter...

متن کامل

A Synaptotagmin Isoform Switch during the Development of an Identified CNS Synapse

Various Synaptotagmin (Syt) isoform genes are found in mammals, but it is unknown whether Syts can function redundantly in a given nerve terminal, or whether isoforms can be switched during the development of a nerve terminal. Here, we investigated the possibility of a developmental Syt isoform switch using the calyx of Held as a model synapse. At mature calyx synapses, fast Ca(2+)-driven trans...

متن کامل

Laminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice

Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...

متن کامل

Developmental regulation of synaptotagmin I, II, III, and IV mRNAs in the rat CNS.

Synaptotagmin I is an abundant synaptic vesicle protein that has an essential function in mediating Ca2+-triggered neurotransmitter release. We have analyzed the distribution of four neural synaptotagmin isoforms during postnatal development of the rat CNS by in situ hybridization. Synaptotagmin I, II, III, and IV genes have distinct patterns of spatiotemporal expression except in cerebellum gr...

متن کامل

Expression analysis of three h-type thioredoxin isoforms in three Iranian grape (Vitis vinifera L.) cultivars, indicating differential expression in different tissues

Thioredoxins (Trxs) are small ubiquitous disulfide reductases that participate in dithiol-disulfide exchange reactions. In contrast to animals and prokaryotes that typically possess one or a few genes encoding Trxs, higher plants contain eight different Trx types: f, m, x, y, z, o, s, and h. Trx h with multiple forms is involved in different processes such as seed germination, cellular protecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular neurosciences

دوره 44 4  شماره 

صفحات  -

تاریخ انتشار 2010